\(\Leftrightarrow\left[\left(x+1\right)^2\right]^2+\left[\left(x-1\right)^2\right]^2=16\)
\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-2x+1^2\right)=16\)
\(\Leftrightarrow x^4+4x^2+1+4x^3+4x+2x^2+x^4+4x^2+1-4x^3-4x+2x^2=16\)
\(\Leftrightarrow2x^4+12x^2+2=16\)
\(\Leftrightarrow x^4+6x^2-7=0\)
Đặt \(x^2=t\ge0\)
\(\Rightarrow t^2+6t-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-7\left(loai\right)\end{matrix}\right.\)
\(t=1\Rightarrow x^2=1\Rightarrow x=\pm1\)