\(\text{Đ/k : }x^2-4x-6\ge0\)
Bình phương 2 vế phương trình, ta được :
\(x^2-4x-6=15\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Thế x tìm được vào Đ/k ta thấy cả \(x=7\) và \(x=-3\) đều thỏa mãn.
Vậy \(S=\left\{7;-3\right\}\).