Ta có : \(\sqrt{x-5}-\sqrt{4x-20}-\frac{1}{5}.\sqrt{9x-45}=3\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\frac{1}{5}\sqrt{9\left(x-5\right)}=3\)
\(\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\frac{3}{5}\sqrt{x-5}=3\left(^∗\right)\)
Đặt \(\sqrt{x-5}=t,\hept{\begin{cases}t>0\\x\ge5\end{cases}}\)
Từ (*) ta có : \(t+2t+\frac{-3}{5}t=3\)
\(\Leftrightarrow5t+10t-3t=15\)
\(\Leftrightarrow t=\frac{5}{4}\left(t/m\right)\)
\(\Leftrightarrow\sqrt{x-5}=\frac{5}{4}\)
\(\Leftrightarrow x-5=\frac{25}{16}\)
\(\Leftrightarrow x=\frac{105}{16}\)
Nghiệm cuối của phương trình là : \(\left\{\frac{105}{16}\right\}\)