Tính đạo hàm của hàm số: y = tan π / 2 – x với x ≠ k π , k ∈ Z
Cho hàm số y = cos 2 x .
a) Chứng minh rằng cos 2 x + k π = cos 2 x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos 2 x .
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π / 3 .
c) Tìm tập xác định của hàm số : z = 1 - cos 2 x 1 + cos 2 2 x
Cho dãy số ( b n ) có số hạng tổng quát là b n = sin α + sin 2 α + . . . + sin n α với α ≠ π / 2 + k π . Tìm giới hạn của ( b n )
Cho hàm số y = sin4x
a) Chứng minh rằng sin4(x + kπ/2) = sin4x với k ∈ Z
Từ đó vẽ đồ thị của hàm số
y = sin4x; (C1)
y = sin4x + 1. (C2)
b) Xác định giá trị của m để phương trình: sin4x + 1 = m (1)
- Có nghiệm
- Vô nghiệm
c) Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x 0 = π / 24
sin 4 x - cos 4 x = 2 3 sin x cos x + 2 tập nghiệm của phương trình có dạng: x = a π b + k π
vậy a + b bằng: (a và b tối giản)
A.2
B.5
C.4
D.3
Tìm m để phương trình sin 4x = m.tan x có nghiệm x ≠ k π
2 cos 3 x = sin 3 x phương trình đã cho có nghiệm x = π 4 + k π x = a r c t a n + k π k ∈ Z vậy A là:
A.2
B.3
C.4
D.-2
Chứng minh rằng cos2(x + kπ) = cos2x, k ∈ Z. Từ đó vẽ đồ thị hàm số y = cos2x
Từ đồ thị hàm số y = cos2x, hãy vẽ đồ thị hàm số y = |cos2x|
Phương trình sinx-3cosx=0 có nghiệm dạng x = a r c c o t m + k π , k ∈ ℤ thì giá trị m là?
A. -3
B. 1 3
C. 3
D. 5