\(\frac{1}{x+1}+\frac{1}{1-x}=\frac{3x-6}{1-x^2}\)
\(\frac{1-x+x+1}{1-x^2}=\frac{3x-6}{1-x^2}\)
\(2=3x-6\)
\(4=3x\)
\(x=\frac{4}{3}\)
\(\frac{1}{x+1}-\frac{1}{x-1}=\frac{3x-6}{1-x^2}\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{1-x}=\frac{3x-6}{\left(1-x\right)\left(x+1\right)}\)
Quy đồng rồi khử mẫu ta được:
\(1-x+x+1=3x-6\)
\(\Leftrightarrow-x+x-3x=-6-1-1\)
\(\Leftrightarrow-3x=-8\)
\(\Leftrightarrow x=\frac{8}{3}\)
Vậy ....
sửa cho mình cái kq là 8/3 nha bn iu, mình tính nhầm
\(\frac{1}{x+1}-\frac{1}{x-1}=\frac{3x-6}{1-x^2}\)
\(\Leftrightarrow\frac{x-1}{x^2-1}-\frac{x+1}{x^2-1}=-\frac{3x-6}{x^2-1}\)
\(\Rightarrow x-1-x-1=-3x+6\)
\(\Leftrightarrow-2+3x-6=0\)
\(\Leftrightarrow3x-8=0\Leftrightarrow x=\frac{8}{3}\)
\(\frac{1}{x+1}-\frac{1}{x-1}=\frac{3x-6}{1-x^2}\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow\frac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{1\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x-6}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Rightarrow\left(x-1\right)-\left(x+1\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x-1-x-1+3x-6=0\)
\(\Leftrightarrow3x-8=0\)
\(\Leftrightarrow x=\frac{8}{3}\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{8}{3}\right\}\)