Bình phương hai vế ta có:
\(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=t\)
Tiếp túc bình phương và chuyển vế, ta có:
\(\sqrt{x+\sqrt{x}}=t^2-x=u\)
\(x+\sqrt{x}=u^2\)
Do y nguyên, x nguyên nên t nguyên, suy ra u nguyên, suy ra u2 nguyên, vậy thì \(\sqrt{x}\) nguyên.
Ta có \(\sqrt{x}\left(\sqrt{x}+1\right)=u^2\). Hai số tự nhiên liên tiếp có tích là số chính phương u2 nên \(\sqrt{x}=0\Rightarrow x=0.\)
Từ đó suy ra y = 0.
Vậy nghiệm của phương trình là (x; y) = (0; 0).