Dùng hằng đẳng thức ko được đành phải dùng delta thôi ạ :((
Viết lại thành pt bậc 2 đối với x:
\(x^2+2x\left(2-y\right)+\left(2y^2-3y-26\right)=0\) (1)
Để pt có nghiệm thì \(\Delta'=\left(2-y\right)^2-\left(2y^2-3y-26\right)\ge0\)
\(\Leftrightarrow-y^2-y+30\ge0\Leftrightarrow-6\le y\le5\)
Super ez :D Nhưng đúng hay ko là một chuyện khác ạ:)
Đưa về pt bậc 2 ẩn x
\(x^2+2y^2-2xy+4x-3y-26=0\)
\(\Leftrightarrow\)\(x^2 + (4-2y)x + 2y^2-3y-26=0\)
\(\Delta=b^2-4ac=\left(4-2y\right)^2-4\left(2y^2-3y-26\right)\)
\(=16-16y+4y^2-8y^2+12y+104\)
\(=-4y^2-4y+120\)
Để phương trình có nghiệm nguyên thì \(\Delta\ge0\)
\(\Leftrightarrow-4y^2-4y+120\ge0\)
\(\Leftrightarrow-y^2-y+30\ge0\)
\(\Leftrightarrow y^2+y-30\ge0\)
\(\Leftrightarrow\left(y+6\right)\left(y-5\right)\ge0\)
\(\Leftrightarrow-6\le x\le5\)
Thay các giá trị của x rồi tìm y