Phương trình tương đương với: \(\left(x^2+16x+60\right)\left(x^2+17x+60\right)-6x^2=0.\)
Đặt \(a=x^2+16x+60,\)phương trình trở thành:
\(a\left(a+x\right)-6x^2=0\)
\(\Leftrightarrow a^2+ax-6x^2=0\)
\(\Leftrightarrow\left(a-2x\right)\left(a+3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-2x=0\\a+3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+14x+60=0\\x^2+19x+60=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot7\cdot x+7^2-7^2+60=0\\\left(x+4\right)\left(x+15\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+7\right)^2+11=0\left(VL\right)\\\left(x+4\right)\left(x+15\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+15=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-15\end{cases}\left(TM\right).}\)
Vậy tập nghiệm phương trình là S = {-15;-4}.