\(\frac{x}{\sqrt{x+1}+1}=\frac{\left(x+1\right)-1}{\sqrt{x+1}+1}=\frac{\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-1\right)}{\sqrt{x+1}+1}=\sqrt{x+1}-1\)
\(pt\Leftrightarrow\left(\sqrt{x+1}-1\right)^2=x-44\)
\(\Leftrightarrow x+1+1-2\sqrt{x+1}=x-44\)
\(\Leftrightarrow\sqrt{x+1}=23\)
\(\Leftrightarrow x=23^2-1=528.\)