cái này dễ mà
\(\frac{\left(x-2\right)^2}{12}-\frac{\left(x+1\right)^2}{21}=\frac{\left(x-4\right)\left(x-6\right)}{28}\)
<=> \(\frac{7\left(x^2-4x+4\right)}{84}-\frac{4\left(x^2+2x+1\right)}{84}=\frac{3\left(x^2-10x+24\right)}{84}\)
<=> 7x2 - 28x + 28 - 4x2 - 8x - 4 = 3x2 - 30x + 72
<=> 3x^2 - 36x - 3x^2 + 30x = 72 - 24
<=> -6x = 48
<=> x = -8
Vậy S = {-8}
\(\frac{\left(x-2\right)^2}{12}-\frac{\left(x+\right)^2}{21}=\frac{\left(x-4\right)\left(x-6\right)}{28}\)
\(7x^2-28x+28-4x^2-8x-4=3x^2-18x-12x+72\)
\(3x^2-36x+24=3x^2-30x+72\)
\(3x^2-36x+24-3x^2+30x-72=0\)
\(-6x-48=0\)
\(-6x=48\)
\(x=-8\)
lm thế nào để chọn câu trả lời đúng