Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Anh

giải phương trình \(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)

Chibi
20 tháng 4 2017 lúc 16:52

ĐK: x \(\ne\) 0, \(\sqrt{2}\) < x < \(\sqrt{2}\)

Đặt y = \(\sqrt{2-x^2}\)

=> y2 = 2 - x2

Ta có hệ PT

\(\frac{1}{x}\)+\(\frac{1}{y}\)= 2

x2 + y2 = 2

<=>

\(\frac{x+y}{xy}\)= 2

(x + y)2 - 2xy = 2

Đặt S = x + y, P = xy

<=>

\(\frac{S}{P}\)= 2

S2 - 2P = 2

<=>

S = 2P

S2 - 2P = 2

=>

4P2 - 2P = 2

<=>

P = 1 và S = 2

Hoặc P = -1/2 và S = -1

TH1: P = 1 và S = 2

x và y là 2 nghiệm của PT: X2 - SX + P = 0

<=> X2 - 2X + 1 = 0

=> X = 1

=> Nghiệm x = 1

TH2: P = -1/2 và S = -1

x và y là 2 nghiệm của PT: X2 - SX + P = 0

<=> X2 + X -\(\frac{1}{2}\)= 0

<=>

X = \(\frac{-1-\sqrt{3}}{2}\)(Nhận) 

Hoặc X = \(\frac{-1+\sqrt{3}}{2}\)(Loại)

Vậy, Nghiệm của phương trình là:

x = 1

Hoặc x = \(\frac{-1-\sqrt{3}}{2}\)

Chibi
20 tháng 4 2017 lúc 16:57

Cái điều kiện là x \(\ne\)0, \(-\sqrt{2}\) < x < \(\sqrt{2}\)nhé.

Chibi
20 tháng 4 2017 lúc 17:06

Nghiệm x = \(\frac{-1+\sqrt{3}}{2}\) bị loại vì lúc này y = \(\frac{-1-\sqrt{3}}{2}\)

x > 0, y < 0 nên phép suy ra lúc ta đặt y = \(\sqrt{2-x^2}\)=> y2 = 2 - xkhông tương đương.


Các câu hỏi tương tự
Họ Và Tên
Xem chi tiết
Full Moon
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
nguyễn mạnh
Xem chi tiết
Thành Sherlocks Holmes
Xem chi tiết
Le Minh Hieu
Xem chi tiết
Full Moon
Xem chi tiết
minhduc123
Xem chi tiết
Nguyễn Quốc Huy
Xem chi tiết