\(4\left(\sin^4x+\cos^4x\right)+\sqrt{3}\sin4x=2\)
<=> \(4\left[\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x\right]+\sqrt{3}\sin4x=2\)
<=> \(4\left(1-\frac{1}{2}\sin^22x\right)+\sqrt{3}\sin4x=2\)
<=> \(4-2\sin^22x+\sqrt{3}\sin4x=2\)
<=> \(-2\sin^22x+\sqrt{3}\sin4x=-2\)
<=> \(\cos4x-1+\sqrt{3}\sin4x=-2\)
<=> \(\cos4x+\sqrt{3}\sin4x=-1\)
<=> \(\frac{1}{2}\cos4x+\frac{\sqrt{3}}{2}\sin4x=-\frac{1}{2}\)
<=> \(\cos\frac{\pi}{3}.\cos4x+\sin\frac{\pi}{3}.\sin4x=\cos\frac{2\pi}{3}\)
<=> \(\cos\left(4x-\text{}\text{}\frac{\pi}{3}\right)=\cos\frac{2\pi}{3}\)
Phương trình lượng giác cơ bản. Em làm tiếp nhé!