Ta có :
\(3x^3-8x^2-2x+4=\left(3x-2\right)\left(x^2-2x-2\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\)
Th1 : \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
Th2: \(x^2-2x-2=0\)
\(\Leftrightarrow x^2-2x+1=3\)
\(\Leftrightarrow\left(x-1\right)^2=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}}\)
Vậy phương trình có 3 nghiệm : \(x=1\), \(x=1\pm\sqrt{3}\)
\(3x^3-8x^2-2x+4=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=1\pm\sqrt{3}\end{cases}}\)
Vậy tập nghiệm của phương trình \(S=\left\{\frac{2}{3};1\pm\sqrt{3}\right\}\)