giải hpt
\(\hept{\begin{cases}x^2+y^2=2\\\left(x+y\right)\left(2+2xy\right)^4=2^9\end{cases}}\)
MN ƠI GIÚP E GIẢI BÀI NÀY VỚI
MAI E ĐI HOK RỒI,E TICH CHO
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
A CHỊ NÀO GIỎI GIẢI KĨ GIÚP E VỚI
MAI E ĐI HOK RỒI
EM SẼ TIXKS CHO
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
giải hpt\(\hept{\begin{cases}x^2+2xy-2x-y+1=0\\3x^2+xy+4x-y-7=0\end{cases}}\)
GIẢI HPT
\(\hept{\begin{cases}Y\left(X^2+1\right)=2X\left(Y^2+1\right)\\\left(X^2+Y^2\right)\left(1+\frac{1}{X^2Y^2}\right)=16\end{cases}}\)
MN ƠI GIÚP E
MAI E ĐI HOK RỒI VỚI LẠI E BỊ CẤM GỬI CÂU HỎI
NÊN MONG A CHỊ GIÚP E
giải hpt
\(\hept{\begin{cases}x^3+y^3=2x^2y^2\\2y+x=3xy\end{cases}}\)
to be continued..
a chi nào giỏi giải kĩ giúp e với
mai e đi hok rôi e ticks cho
GIẢI BẤT CỨ CÂU NÀO CŨNG ĐƯỢC NHÉ Ạ, EM CẢM ƠN TRƯỚC =))
f)
\(\hept{\begin{cases}x^3+y^3=65\\x^2y+xy^2=20\end{cases}}\)
g)
\(\hept{\begin{cases}x^2-2y^2=2x+y\\y^2-2x^2=2y+x\end{cases}}\)
h)
\(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
i)
\(\hept{\begin{cases}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{cases}}\)
GIẢI HPT
A, \(\hept{\begin{cases}X^2+Y^2+X+Y=4\\X\left(X+Y+1\right)+Y\left(Y+1\right)=2\end{cases}}\)
B,\(\hept{\begin{cases}X^3\left(1+3Y\right)=8\\X\left(Y^3-1\right)=6\end{cases}}\)
A CHỊ NÀO GIỎI GIẢI GIÚP E VỚI
E MỚI HOK NÊN CHƯA HIỂU
E SẼ TICKS
giải hpt
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\\x^2+5x+y=16\end{cases}}\)
b)\(\hept{\begin{cases}2x-2y-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)