Cho hình vuông ABCD có cạnh là a. Trên cạnh BC lấy điểm E, đường thẳng AE cắt đường thẳng CD tại điểm M. Gọi O là giao điểm của hai đường chéo AC và BD.
a. Chứng minh 1/AE^2 + 1/AM^2 = 1/a^2
Giúp mình với!
Cho hình vuông ABCD. Gọi E là diểm thuộc cạnh BC(E khác B). Tia AE cắt tia DC tại K. Kẻ d qua A vuông góc AE. Đường thẳng d cắt CD tại I.
a) Chứng minh 1/AE^2 +1/AK^2 không thay đổi khi E di chuyển trên BC
b) đường thẳng đi qua A vuông góc với IE cắt đường thẳng CD tại M. Kẻ MQ vuống góc AE. Chứng minh tam giác AMQ vuông cân và 1/AE +1/AK= căn 2/AM
c) Tìm vị trí của E để IK ngắn nhất.
Cho hình vuông ABCD. Lấy điểm E trên cạnh BC. Tia AE cắt đường thẳng CD tại G. Trên mặt phẳng bờ là đg thẳng AE chứa tia AD, kẻ AF vuông góc AE và AF= AE.
b. chứng minh \(\dfrac{1}{AD^2}=\dfrac{1}{AE^2}+\dfrac{1}{AG^2} \)
a. chứng minh F, D, C thẳng hàng
c. Biết AD= 13cm, AF : AG= 1:3. Tính độ dài của FG
Cho hình vuông ABCD. Lấy điểm E thuộc cạnh BC, Với E ko trùng B và E ko trùng C. Vẽ EF vuông góc với AE, Với F thuộc CD. Đường thẳng AF cắt đg thẳng BC tại G. Vẽ đg thẳng a đi qua điểm A và Vuông góc với AE, đg thẳng a cắt đg thẳng DE tại điểm H.
1/ chứng minh AE/AF = CD/DE
2/ chứng minh rằng tứ giác AEGH là tứ giác nội tiếp
3/ gọi b là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE tại E, biết b cắt đg trung trực của đoạn EG tại K. Chứng minh KG là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE
Cho hình vuông ABCD và điểm M thuộc cạnh BC. Kéo dài AM cắt tia DC tại N. Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E. Chứng minh rằng:
a, AE = AN
b,\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD cố định. Một điểm I di động trên cạnh AB (I khác A và B). Tia DI cắt đường thẳng CB tại E. Đường thẳng CI cắt AE tại M. Đường thẳng BM cắt đường thẳng DE tại F.
1. Chứng minh rằng BI^2/BE^2 = AI/CE.
2. Trên tia đối của tia AB lấy điểm P sao cho AP = BE. Đường thẳng AE cắt CP tại H. Chứng minh rằng DH song song CI.
3. Tìm quỹ tích điểm F khi I di động trên cạnh AB.
Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh rằng:\(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}\)
Trên cạnh hình vuông ABCD, lấy một điểm E tuỳ ý(E khác A và B). Phân giác của góc CDE cắt cạnh BC tại K.
a) CMR: AE + KC = DE
b) Đường thẳng AK cắt CD tại F. Chứng minh: 1/AD2 = 1/AK2 + 1/AF2
Cho hình vuông ABCD , điểm M thuộc cạnh BC , kéo dài AH cắt DC tại N . Qua A kẻ đường thẳng vuông góc với AM cắt tia CB tại E . CHỨNG MINH RẰNG :
A) AE=AN
B) \(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)