Bạn tham khảo tại link này
https://olm.vn/hoi-dap/detail/213782067554.html
Câu hỏi của Momozono Nanami - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo tại link này
https://olm.vn/hoi-dap/detail/213782067554.html
Câu hỏi của Momozono Nanami - Toán lớp 9 - Học toán với OnlineMath
giải hệ phương trình \(\hept{\begin{cases}\sqrt{3x}\left(1+\frac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\frac{1}{x+y}\right)=4\sqrt{2}\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\sqrt{3x}\left(1+\frac{1}{x+y}\right)=2\\\sqrt{7y}\left(1-\frac{1}{x+y}\right)=4\sqrt{2}\end{cases}}\)
\(\hept{\begin{cases}\left(x-2\right)\left(y+3\right)=5+xy\\x\left(y-3\right)=xy\end{cases}}\)
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4\\\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{y}}=6\end{cases}}\)
GIải giúp mình 2 hệ này với :<
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{cases}}\)
giải hệ phương trình : \(\hept{\begin{cases}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{cases}}\)
Giải hệ phương trình:\(\hept{\begin{cases}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(3x+2y\right)\left(y+1\right)=4-x^2\end{cases}}\)
Giải hệ phương trinh:
\(1,\hept{\begin{cases}x\left(x-y\right)=6-x-2y\\\left(x+2\right)\sqrt{y^2+4}=y\sqrt{x^2+4y+8}\end{cases}}\)
\(2,\hept{\begin{cases}x^2-xy+y^2=3\\2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{x}\left(1+\frac{8}{x+y}\right)=3\sqrt{3}\\\sqrt{y}\left(1-\frac{8}{x+y}\right)=-1\end{cases}}\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)