\(\hept{\begin{cases}x\left(2\sqrt{y-1}-x\right)+y\left(2\sqrt{x-1}-y\right)=0\\x^3+y^3=16\end{cases}}\)
giai he pt
Giai pt
1) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
2) \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}-3=0\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
4) \(x^2+\sqrt{x+5}=5\)
5) \(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
giải pt \(6\left(x^2+x+1\right)^2+2x^2+2x-3-\sqrt{4x+5}=0\)
\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
Giúp e giải pt:
2x-3+\(\frac{3x-1}{\sqrt{3-2x^2}+2-x}=0\)
\(^{x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}}\)
\(2\left(x-2\right)\sqrt{x-1}=3x^2+5x-4-4x\sqrt{2x-1}\)
Ai dậy r giúp vs :33 1 câu cx đc nhé :v toàn giải pt hết nhé
1) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}.\)
2) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}\)
3) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
4) \(\left(x+17\right)\sqrt{4-x}+\left(20-x\right)\sqrt{x+1}-9\sqrt{4-x}.\sqrt{x+1}=36\)
giải pt
\(\sqrt{4x^2}=3\)
\(\sqrt{x^2-6x+9}=2\)
\(\sqrt{\left(2x-3\right)^2}=6\)
\(\sqrt{25x^2}=100\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
B1:Giải bpt sau:\(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right).\left(x^6-x^3+x^2-x+1\right)\ge0\)
B2:Cho a;b;c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
B3:giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
1.a Giải hệ pt 1.2(x+3)=3(y+1)+1 2.3(x-y+1)=2(x-2)=3
b) \(x^4-7x^2+6=0\)
2.Cho BT
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a. Rút gọn P
b.Tìm min P
c. Tìm x để BT Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị là số nguyên
3.Cho pt \(x^2-2\left(m+1\right)x+m-4=0\)
a.Cm pt có 2 nghiệm phân biệt. Tìm m để pt có 2 nghiệm dương
b. Gọi x1,x2 là 2 nghiệm phương trình Tìm min M\(=\frac{x1^2+x2^2}{x1\left(1-x2\right)+x2\left(1-x1\right)}\)