Giải hệ phương trình:x+y+z=1 và x^4+y^4+z^4=xyz?
a)Cho a+b+c=1.C/m rằng:a4+b4+c4>=abc
b)Giải hệ phương trình:x+y+z=1và x4+y4+z4=xyz
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
b)\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=1\frac{1}{5}\\\frac{xyz}{x+z}=1\frac{1}{2}\end{cases}}\)
Giải hệ phương trình\(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}x+y+z=1\\x^4+y^4+z^4=xyz\end{cases}}\)
xyz/x+y=2
xyz/y+z=1,2
xyz/x+z=1,5
Giả hệ phương trình trên
Giải hệ phương trình \(\hept{\begin{cases}x+y+z=\frac{3}{xyz}\\\sqrt{x}+\sqrt{y}+\sqrt{z}=3\end{cases}}\)