Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham thi thu Phuong

Giải hệ phương trình

\(\hept{\begin{cases}xy+x+y=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

Nyatmax
22 tháng 9 2019 lúc 15:58

\(\Leftrightarrow\hept{\begin{cases}2xy+2x+2y=4+6\sqrt{2}\\x^2+y^2=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+2\left(x+y\right)-10-6\sqrt{2}=0\left(1\right)\\x^2+y^2=6\left(2\right)\end{cases}}\)

Dat \(x+y=t\left(t\in R\right)\)

PT(1) tro thanh 

\(t^2+2t-10-6\sqrt{2}=0\)

Ta lai co:

\(\Delta^`=1^2-1.\left(-10-6\sqrt{2}\right)=\left(3+\sqrt{2}\right)^2>0\)

\(\Rightarrow t_1=2+\sqrt{2};t_2=-4-\sqrt{2}\)

Voi \(x+y=2+\sqrt{2}\Rightarrow y=2+\sqrt{2}-x\)

Thay vao PT(2) ta duoc:

\(x^2+\left(2+\sqrt{2}-x\right)^2=6\)

\(\Leftrightarrow2x^2-\left(2\sqrt{2}+4\right)x+4\sqrt{2}=0\)

Ta lai co:

\(\Delta^`=\left[-\left(\sqrt{2}+2\right)\right]^2-2.4\sqrt{2}=\left(2-\sqrt{2}\right)^2>0\)

\(\Rightarrow x_1=2;x_2=\sqrt{2}\)

\(\Rightarrow y_1=\sqrt{2};y_2=2\)

Voi \(x+y=-4-\sqrt{2}\Rightarrow y=-4-\sqrt{2}-x\)

Thay vao PT(2) ta duoc:

\(x^2+\left(-4-\sqrt{2}-x\right)^2=6\)

\(\Leftrightarrow2x^2+\left(2\sqrt{2}+8\right)x+12+8\sqrt{2}=0\)

Ta lai co:

\(\Delta^`=\left(\sqrt{2}+4\right)^2-2.\left(12+8\sqrt{2}\right)=-\left(6+8\sqrt{2}\right)< 0\)

Suy ra: \(x+y=-4-\sqrt{2}\left(l\right)\)

Vay nghiem cua HPT la \(\left(2;\sqrt{2}\right),\left(\sqrt{2};2\right)\)


Các câu hỏi tương tự
Lê Tài Bảo Châu
Xem chi tiết
Lei
Xem chi tiết
nguyentranquang
Xem chi tiết
Trung Phan Bảo
Xem chi tiết
Trần Thị Anh Thơ
Xem chi tiết
fan FA
Xem chi tiết
trần xuân quyến
Xem chi tiết
Lê Thị Hải Anh
Xem chi tiết
Nguyễn Thị Hòa
Xem chi tiết