Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(x+y\right)\left(3y+1\right)=8\\x^2+xy+y^2=x+y+1\end{cases}}\)
giải hệ phương trình ;
\(\hept{\begin{cases}\left|xy-4\right|=8-y^2\\xy=2+x^2\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}x\left(y+z\right)=8\\y\left(z+x\right)=18\\z\left(x+y\right)=20\end{cases}}\)
b)\(\hept{\begin{cases}5xy=6\left(x+y\right)\\7yz=12\left(y+z\right)\\3xz=4\left(x+z\right)\end{cases}}\)
c)\(\hept{\begin{cases}x+y+xy=1\\x+z+xz=2\\y+z+yz=5\end{cases}}\)
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
b) \(\hept{\begin{cases}x^2-y^2=5\\1-2xy^2-3x+3x^2=\left(x-y\right)\left(5+xy\right)\end{cases}}\)
c) \(\hept{\begin{cases}\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=2020\\x^2-4\left(y+z\right)+z^2+8=0\end{cases}}\)(không biết đề có nhầm không mà phương trình này có tới 3 ẩn \(x,y,z\)luôn)
Giải các hệ phương trình sau:
a, \(\hept{\begin{cases}\sqrt{\frac{1-x}{2y+1}}+\frac{2y+1}{1-x}=2\\x-y=1\end{cases}}\)
b, \(\hept{\begin{cases}2x-y=5\\x^2+xy+y^2=7\end{cases}}\)
c, \(\hept{\begin{cases}\left|x-2\right|+\left|y-3\right|=3\\2\left|x-2\right|+3y=8\end{cases}}\)
Giải hệ phương trinh:
\(1,\hept{\begin{cases}x\left(x-y\right)=6-x-2y\\\left(x+2\right)\sqrt{y^2+4}=y\sqrt{x^2+4y+8}\end{cases}}\)
\(2,\hept{\begin{cases}x^2-xy+y^2=3\\2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{x}\left(1+\frac{8}{x+y}\right)=3\sqrt{3}\\\sqrt{y}\left(1-\frac{8}{x+y}\right)=-1\end{cases}}\)
Giải hệ phương trình với x, y nguyên :
a)\(\hept{\begin{cases}\left(xy+1\right)^2=25\\\left(x+y\right)^2=49\end{cases}}\)
b) \(\hept{\begin{cases}\left(xy+1\right)^2=49\\\left(x+y\right)^2=25\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\left(x^2+y^2\right)\left(1+\frac{1}{xy}\right)^2=8\\\left(x^3+y^3\right)\left(1+\frac{1}{xy}\right)^3=16\end{cases}}\)