Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kudo

Giải hệ phương trình:

\(\hept{\begin{cases}3\left(x^3-y^3\right)+20x^2+2xy+5y^2+39x=100\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)

Không Tên
28 tháng 7 2018 lúc 21:35

Viết lại phương trình thứ 2 của hệ thành:

\(\hept{\begin{cases}x^2+x\left(y-3\right)+y^2-4y+4=0\\y^2+y\left(x-4\right)+x^2-3x+4=0\end{cases}}\)   \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta_x\ge0\\\Delta_y\ge0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}1\le y\le\frac{7}{3}\\0\le x\le\frac{4}{3}\end{cases}}\)

Thế  \(xy=-x^2-y^2+3x+4y-4\)từ pt  (2)  vào pt  (1)  ta được:

\(3x^3+18x^2+45x-3y^3+3y^2+8y-108=0\)

Xét hàm số:  \(f\left(x\right)=3x^3+18x^2+45x\)trên  \(\left[0;\frac{4}{3}\right]\)ta có:  \(f'\left(x\right)=9x^2+6x+45>0\)

nên hàm số   f(x)   đồng biến.  suy ra:  \(f\left(x\right)\le f\left(\frac{4}{3}\right)=\frac{892}{9}\)

Xét hàm số:  \(g\left(y\right)=-3y^3+3y^2+8y-108\)trên \(\left[0;\frac{7}{3}\right]\)ta có:  \(g'\left(y\right)=-9y^2+6y+8,\)

\(g'\left(y\right)=0\)\(\Leftrightarrow\)\(y=\frac{4}{3}\) suy ra: \(g\left(y\right)\le g\left(\frac{4}{3}\right)=\frac{-892}{0}\)

suy ra:   \(f\left(x\right)+g\left(y\right)\le0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y=\frac{4}{3}\)

thử lại thấy đúng

nên cặp nghiệm \(\left(x;y\right)=\left(\frac{4}{3};\frac{4}{3}\right)\)thỏa mãn hệ

p/s: chúc bạn học tốt, cách này đối vs bạn chắc khó hiểu, có j thì hỏi thầy cô dạy cho dễ hiểu nha hoặc ib mk (nhưng mk mak giải thích thì chắc bạn khó hiểu hơn ^^ ko có khiếu ăn nói)


Các câu hỏi tương tự
Nguyễn Thị Hòa
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
hiền hà
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Hắc Thiên
Xem chi tiết
Aeris
Xem chi tiết
Lê Đức Anh
Xem chi tiết
Lê Song Phương
Xem chi tiết
Lan Lương Ngọc
Xem chi tiết