\(\hept{\begin{cases}\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=xy\\x^{2018}+y^{2018}=8\sqrt{\left(xy\right)^{2015}}\end{cases}}\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{x^2+y^2}{xy}+\frac{2\sqrt{xy}}{x+y}=3\\\sqrt{x^2-3x+2}=\sqrt{10\left(y-2\right)}-\sqrt{y-3}\end{cases}}\)
Giải hệ phương trinh:
\(1,\hept{\begin{cases}x\left(x-y\right)=6-x-2y\\\left(x+2\right)\sqrt{y^2+4}=y\sqrt{x^2+4y+8}\end{cases}}\)
\(2,\hept{\begin{cases}x^2-xy+y^2=3\\2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{x}\left(1+\frac{8}{x+y}\right)=3\sqrt{3}\\\sqrt{y}\left(1-\frac{8}{x+y}\right)=-1\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}xy=15\\\left(x+y\right)-\sqrt{\frac{x+y}{x-y}}=\frac{12}{x-y}\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}x^3+y^3+7\left(x+y\right)=3\left(x^2+xy+y^2+5\right)\left(1\right)\\\sqrt{\frac{3}{x+1}}+\sqrt{\frac{3}{y+1}}=\frac{4}{\sqrt{x}+\sqrt{y}}\left(2\right)\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\end{cases}\le3}\)
\(\hept{\begin{cases}\left(x-2\right)\left(y+3\right)=5+xy\\x\left(y-3\right)=xy\end{cases}}\)
\(\hept{\begin{cases}\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4\\\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{y}}=6\end{cases}}\)
GIải giúp mình 2 hệ này với :<