một số bằng 4 và hai số kia bằng 1
có 3 nghiệm
Bạn giải chi tiết giúp mình được ko
một số bằng 4 và hai số kia bằng 1
có 3 nghiệm
Bạn giải chi tiết giúp mình được ko
Giải hệ phương trình : \(\hept{\begin{cases}x+y+z=6\\x^2+y^2+z^2=18\\\sqrt{x}+\sqrt{y}+\sqrt{z}=4\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=4\\x+y+z=6\\x^2+y^2+z^2=18\end{cases}}\)
Giải hệ phương trình:
\( \begin{cases} x+y+z=6 \\ x^2+y^2+z^2=18, \\ \sqrt{x}+\sqrt{y}+\sqrt{z}=4 \end{cases}\)
Giải hệ phương trình :
\(\hept{\begin{cases}x+y+z=6\\\frac{xy+yz+zx}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=2\sqrt{2}\end{cases}}\)
Giải hệ phương trình:
\(\begin{cases} x+y+z=6, \\ x^2+y^2+z^2=18, \\ sqrt{xƯ+sqrt{y}+sqrt{z} \end{cases}\)
Giải hệ phương trình \(\hept{\begin{cases}\sqrt{2-x}+\sqrt{2-y}+\sqrt{2-z}=3\\\sqrt{8+x}+\sqrt{8+y}+\sqrt{8+z}=9\end{cases}}\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
giải hệ phương trình \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=6\\\sqrt{8-x}+\sqrt{8-y}+\sqrt{8-z}=6\end{cases}}\)
câu 1: Giải và biện luận hệ phương trình:\(\hept{\begin{cases}2\left(m-1\right)\cdot x+y=2\\\left(m+2\right)\cdot x+\left(m-1\right)\cdot y=3\end{cases}}\)
câu 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\x+z=\sqrt{4y-1}\end{cases}}\)