Giải hệ phương trình: \(\hept{\begin{cases}4xy+4\left(x^2+y^2\right)+\frac{3}{\left(x+y\right)^2}=\frac{85}{3}\\2x+\frac{1}{x+y}=\frac{13}{3}\end{cases}}\)
Giải các hệ phương trình:
a) \(\hept{\begin{cases}x-y+2xy=5\\x^2+y^2+xy=7\end{cases}}\)
b) \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{cases}}\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
Giải các hệ phương trình:
a) \(\hept{\begin{cases}\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\end{cases}}\)
b)\(\hept{\begin{cases}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{cases}}\)
c)\(\hept{\begin{cases}\frac{x}{y}-\frac{y}{x}=\frac{5}{6}\\x^2-y^2=5\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}xy^2+2x+y=4xy\\\frac{1}{xy}+\frac{1}{y^2}+\frac{y}{x}=3\end{cases}}\)
Giải hệ phương trình:
a, \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
b, \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{cases}}\)
Giải hệ phương trình:
a)
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\)
b)
\(\hept{\begin{cases}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{cases}}\)
1. Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}\frac{x}{y}-\frac{x}{y+12}=1\\\frac{x}{y-2}-\frac{x}{y}=2\end{cases}}\) b) \(\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
c) \(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\) d) \(\hept{\begin{cases}x+y+|x|=25\\x-y+|y|=30\end{cases}}\)
2. Tìm các giá trị của m để nghiệm của hệ phương trình sau là các số dương: \(\hept{\begin{cases}x-y=2\\mx+y=3\end{cases}}\)
Giúp với mn ơi