giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+x^3y^3+y^3=17\\x+y+xy=5\end{cases}}\)
b) \(\hept{\begin{cases}x^4+x^2y^2+y^4=481\\x^2+xy+y^2=37\end{cases}}\)
bài 1:giải hệ phương trình \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}}\)
Bài 2: giải hệ phương trình \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+y^2+xy=3\\x^3+2y^3=y+2x\end{cases}}\)
2)\(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^4=4\end{cases}}\)
Giải hệ phương trình :
a) \(\hept{\begin{cases}x^2+y^5+x-9y=2\\x^4+4=-4x-25y^2\end{cases}}\)
b) \(\hept{\begin{cases}x^2-4x+3=0\\x^2+xy+y^2=3\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
GIẢI HỆ PHƯƠNG TRÌNH:
1.\(\hept{\begin{cases}\sqrt[4]{y^3-1}+\sqrt{x}=3\\x^2+y^2=82\end{cases}}\)
2.\(\hept{\begin{cases}\left(x-1\right)\left(xy-x^2\right)=3\\x^2-2y+y^2=4\end{cases}}\)
Giải các hệ phương trình sau:
a \(\hept{\begin{cases}x^2+y^2+xy=61\\x^4+x^2y^2+y^4=1281\end{cases}}\)
b) \(\hept{\begin{cases}2x^2+xy-y^2-5x+y+2=0\\x^2+y+x+y-4=0\end{cases}}\)
giải các hệ phương trình
\(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)\(\hept{\begin{cases}x+x^2+x^3+x^4=y+y^2+y^3+y^4\\x^2+y^2=1\end{cases}}\)