Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phùng Gia Bảo

Giải hệ phương trình: \(\hept{\begin{cases}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{cases}}\)

Nguyễn Linh Chi
24 tháng 3 2020 lúc 20:04

\(\hept{\begin{cases}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{cases}}\)<=> \(\hept{\begin{cases}x^2+y^2+xy=13\\\left(x^2+y^2\right)^2-x^2y^2=91\end{cases}}\)

Đặt: \(x^2+y^2=a;xy=b\)

Ta có hệ: \(\hept{\begin{cases}a+b=13\\a^2-b^2=91\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=13\\a-b=7\end{cases}}\)<=> \(\hept{\begin{cases}a=10\\b=3\end{cases}}\)

Khi đó: \(\hept{\begin{cases}x^2+y^2=10\\xy=3\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=10\\xy=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=\pm4\\xy=3\end{cases}}\)

Với : \(\hept{\begin{cases}x+y=4\\xy=3\end{cases}}\)ta có: x; y là nghiệm hệ phương trình: \(X^2-4X+3=0\Leftrightarrow\orbr{\begin{cases}X=3\\X=1\end{cases}}\)

=> Hệ có 2 nghiệm: (3; 1) và (1;3)

Với \(\hept{\begin{cases}x+y=-4\\xy=3\end{cases}}\)ta có: x; y là nghiệm hệ phương trình:: \(X^2+4X+3=0\Leftrightarrow\orbr{\begin{cases}X=-3\\X=-1\end{cases}}\)

=> hệ có 2 nghiệm: ( -3; -1) và (-1; -3) 

Vậy hệ có 4 nghiệm.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Tài Bảo Châu
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Xem chi tiết
Nguyễn Thị Lan
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Lê Đức Anh
Xem chi tiết
Nguyễn Thị Ngọc Quỳnh
Xem chi tiết