Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

giải hệ phương trình \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+4\sqrt{xy}=16\\x+y=10\end{cases}}\)

Nguyễn Minh Đăng
18 tháng 10 2020 lúc 11:57

đk: \(x,y\ge0\)

Đặt \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=a\\\sqrt{xy}=b\end{cases}}\) với \(a,b\ge0\)

\(\Rightarrow x+y=\left(\sqrt{x}+\sqrt{y}\right)^2-2\sqrt{xy}=a^2-2b\)

Khi đó \(HPT\Leftrightarrow\hept{\begin{cases}a+4b=16\\a^2-2b=10\end{cases}}\)

Đến đây thì dễ dàng rồi: \(HPT\Leftrightarrow\hept{\begin{cases}b=\frac{16-a}{4}\\a^2-2b=10\end{cases}}\)

\(\Leftrightarrow a^2-\frac{16-a}{2}=10\)

\(\Leftrightarrow2a^2+a-36=0\)

\(\Leftrightarrow\left(2a^2-8a\right)+\left(9a-36\right)=0\)

\(\Leftrightarrow\left(a-4\right)\left(2a+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=4\\a=-\frac{9}{2}\left(ktm\right)\end{cases}}\Rightarrow\hept{\begin{cases}a=4\\b=\frac{16-4}{4}=3\end{cases}}\)

Gọi \(\sqrt{x},\sqrt{y}\) là 2 nghiệm của PT \(t^2-4t+3=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\Leftrightarrow\left(\sqrt{x};\sqrt{y}\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;9\right);\left(9;1\right)\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Alex Capricorn
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Nguyễn Minh Huy
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Trần Mai Ngọc
Xem chi tiết
Trung Phan Bảo
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết