Ta đi giải hệ: \(\hept{\begin{cases}\left(x^2+xy+y^2\right)\sqrt{x^2+y^2}=125\left(1\right)\\\left(x^2-xy+y^2\right)\sqrt{x^2+y^2}=65\left(2\right)\end{cases}}\)
Lấy (1) + (2), ta được: \(\left(x^2+y^2\right)\sqrt{x^2+y^2}=95\Leftrightarrow\sqrt{x^2+y^2}=\sqrt[3]{95}\)
thay vào (1)\(\Rightarrow\left[\left(\sqrt[3]{95}\right)^2+xy\right]\sqrt[3]{95}=125\Rightarrow xy=\frac{125}{\sqrt[3]{95}}-\left(\sqrt[3]{95}\right)^2\)
Từ đó ta có hệ: \(\hept{\begin{cases}x^2+y^2=\sqrt[3]{95}\\2xy=\frac{250}{\sqrt[3]{95}}-2\left(\sqrt[3]{95}\right)^2\end{cases}}\)
Bạn xem lại đề bài chứ giải hệ này ra chắc lên bàn thờ luôn đó!