Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Hoài

Giải hệ phương trình 

\(\hept{\begin{cases}\left(x^2+1\right)y=2x^2\\\left(y^2+1\right)z=2y^2\\\left(z^2+1\right)x=2z^2\end{cases}}\)

Trần Quốc Đạt
27 tháng 1 2017 lúc 9:36

Nhận xét: Nếu hệ có nghiệm thì nghiệm đó phải thoả \(x,y,z\ge0\).

------

Kí hiệu hàm số \(f\left(x\right)=\frac{2x^2}{x^2+1}\).

Giả sử \(0\le x\le y\) (\(x,y\) này ko liên quan đến hệ). Khi đó ta phát biểu \(f\left(x\right)\le f\left(y\right)\) và biến đổi tương đương thì thấy đúng.

------

Quay lại hệ. Viết lại hệ dưới dạng: \(\hept{\begin{cases}x=f\left(z\right)\\y=f\left(x\right)\\z=f\left(y\right)\end{cases}}\)

Do hệ là bất biến theo phép hoán vị vòng quanh nên ko mất tính tổng quát chỉ cần xét 2 trường hợp:

Trường hợp 1: \(0\le x\le y\le z\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(y\right)\le f\left(z\right)\) hay \(y\le z\le x\).

Vậy \(x=y=z\) trong trường hợp này.

Trường hợp 2: \(0\le x\le z\le y\). Khi đó theo CM trên thì \(f\left(x\right)\le f\left(z\right)\le f\left(y\right)\) hay \(y\le x\le z\).

Vậy \(x=y=z\) trong trường hợp này.

Tổng hợp lại, trong cả 2 trường hợp ta chỉ cần giải MỘT pt đó là \(\left(x^2+1\right)x=2x^2\).

Pt có nghiệm \(x=0,x=1\).

Vậy \(x=y=z=0,x=y=z=1\) là 2 nghiệm của hệ.

ngonhuminh
27 tháng 1 2017 lúc 9:48

chịu ảnh dùng kiến thức thấp hơn được không

Nguyễn Thu Hoài
27 tháng 1 2017 lúc 23:29

Bạn ơi, mình tìm ra được 5 nghiệm cơ, cũng xoay quanh 1 với -1

Nguyễn Thu Hoài
27 tháng 1 2017 lúc 23:31

mình làm sai rồi


Các câu hỏi tương tự
vũ tiền châu
Xem chi tiết
Lan Lương Ngọc
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Trung Phan Bảo
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Nguyễn Duy Long
Xem chi tiết
Incursion_03
Xem chi tiết
Blue Moon
Xem chi tiết
Nguyễn Mai
Xem chi tiết