giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}2\left(x+y\right)^3+4xy-3=0\\\left(x+y\right)^4+2y^2+x+1=2x^2+4xy+3y\end{cases}}\)
giải hệ phương trình: \(\hept{\begin{cases}16x^3y^3-9y^3=\left(2xy-y\right)\left(4xy^2+3\right)\\4x^2y^2-2xy^2+y^2=3\end{cases}}\)
giải hệ phương trình : a)\(\hept{\begin{cases}x+3y=4\\2x+5y=7\end{cases}}\)\(\hept{\begin{cases}3x+2y=1\\3x+y=2\end{cases}}\)
giải hệ phương trình :
\(\hept{\begin{cases}x^2-2xy+3y^2=9\\x^2-4xy+5y^2=5\end{cases}}\)
Giải hệ phương trình \(\hept{\begin{cases}2x^2+3xy-2y^2-5\left(2x-y\right)=0\\x^2-2xy-3y^2+15=0\end{cases}}\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
giải các hệ phương trình sau :
\(\hept{\begin{cases}x^2-2xy+3y^2=9\\x^2-4xy+5y^2=5\end{cases}}\)