Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
 ๖ۣۜFunny-Ngốkツ

Giải hệ phương trình :

\(\hept{\begin{cases}2x^2-6xy+10=0\\9y^2-12x+26=0\end{cases}}\)

titanic
16 tháng 9 2018 lúc 12:20

\(\Leftrightarrow\hept{\begin{cases}2.\left(x^2-3xy+5\right)=0\\3.\left(3y^2-4x+12\right)+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2-3xy+5=0\\3y^2-4x+12=-\frac{2}{3}\end{cases}}\)\(\Rightarrow x^2-3xy+5+3y^2-4x+12=-\frac{2}{3}\)

\(\Leftrightarrow3.\left(y^2-2.\frac{1}{2}x.y+\frac{x^2}{4}\right)+\frac{1}{4}x^2-4x+17+\frac{2}{3}=0\)

\(\Leftrightarrow3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x^2-16x\right)+\frac{53}{3}=0\)

\(\Leftrightarrow3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x^2-2.8x+64\right)+\frac{5}{3}=0\)

\(\Leftrightarrow3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x-8\right)^2+\frac{5}{3}=0\)

Vì \(3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x-8\right)^2\ge0\)nên \(3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x-8\right)^2+\frac{5}{3}>0\)

Vậy không có x,y thỏa mãn ???? 

Full Moon
16 tháng 9 2018 lúc 16:22

\(\hept{\begin{cases}2x^2-6xy+10=0\\9y^2-12x+26=0\end{cases}}\)

Cộng hai phương trình trên, ta có :

\(2x^2-6xy+10+9y^2-12x+26=0\Leftrightarrow\left(x^2-12x+36\right)+\left(9y^2-6xy+x^2\right)=0\)\(\Leftrightarrow\left(x-6\right)^2+\left(3y-x\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}x-6=0\\3Y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}}\)

Bạn tự KL nhé


Các câu hỏi tương tự
Nguyễn Phương Thảo
Xem chi tiết
Vũ Ngọc Duy Anh
Xem chi tiết
tiểu long nữ
Xem chi tiết
hà ngọc ánh
Xem chi tiết
Huyền Ngọc
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Huyền Ngọc
Xem chi tiết
Phạm Thảo Linh
Xem chi tiết
olm
Xem chi tiết