\(\Leftrightarrow\hept{\begin{cases}2.\left(x^2-3xy+5\right)=0\\3.\left(3y^2-4x+12\right)+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2-3xy+5=0\\3y^2-4x+12=-\frac{2}{3}\end{cases}}\)\(\Rightarrow x^2-3xy+5+3y^2-4x+12=-\frac{2}{3}\)
\(\Leftrightarrow3.\left(y^2-2.\frac{1}{2}x.y+\frac{x^2}{4}\right)+\frac{1}{4}x^2-4x+17+\frac{2}{3}=0\)
\(\Leftrightarrow3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x^2-16x\right)+\frac{53}{3}=0\)
\(\Leftrightarrow3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x^2-2.8x+64\right)+\frac{5}{3}=0\)
\(\Leftrightarrow3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x-8\right)^2+\frac{5}{3}=0\)
Vì \(3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x-8\right)^2\ge0\)nên \(3.\left(y-\frac{x}{2}\right)^2+\frac{1}{4}.\left(x-8\right)^2+\frac{5}{3}>0\)
Vậy không có x,y thỏa mãn ????
\(\hept{\begin{cases}2x^2-6xy+10=0\\9y^2-12x+26=0\end{cases}}\)
Cộng hai phương trình trên, ta có :
\(2x^2-6xy+10+9y^2-12x+26=0\Leftrightarrow\left(x^2-12x+36\right)+\left(9y^2-6xy+x^2\right)=0\)\(\Leftrightarrow\left(x-6\right)^2+\left(3y-x\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}x-6=0\\3Y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}}\)
Bạn tự KL nhé