+x = 0 thì pt (1) thành 0 = 1 (vô lí)
+Xét x khác 0.
\(pt\left(1\right)\Leftrightarrow2+3y=\frac{1}{x^3};\text{ }pt\left(2\right)\Leftrightarrow y^3=2+\frac{3}{x}\)
Đặt \(a=\frac{1}{x}\) thì hệ thành
\(2+3y=a^3;\text{ }2+3a=y^3\)
\(\Rightarrow2+3y+y^3=2+3a+a^3\Leftrightarrow a^3-y^3+3\left(a-y\right)=0\)
\(\Leftrightarrow\left(a-y\right)\left(a^2-ay+y^2+3\right)=0\)
\(\Leftrightarrow a=y\text{ (do }a^2-ay+y^2+3=\left(a-\frac{y}{2}\right)^2+\frac{3y^2}{4}+3>0\text{)}\)
Thay vào pt đầu ta có: \(a^3=3a+2\Leftrightarrow\left(a+1\right)^2\left(a-2\right)=0\Leftrightarrow a=-1\text{ hoặc }a=2\)
\(+a=-1\Rightarrow y=-1;\text{ }x=\frac{1}{a}=-1\)
\(+a=2\Rightarrow b=2;\text{ }x=\frac{1}{a}=\frac{1}{2}\)
Vậy tập nghiệm của hệ là \(S=\left\{\left(-1;-1\right);\left(\frac{1}{2};2\right)\right\}\)