Từ pt (1) ta sẽ có
\(\left(x+1\right)^3-y^3+3\left(x+1-y\right)=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]+3\left(x+1-y\right)=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2+3\right]=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1+\frac{y}{2}\right)^2+\frac{3y^2}{4}+3\right]=0\)
\(\Leftrightarrow x+1=y\left(Do\left[...\right]>0\right)\)
Thay vô pt (2) ....