Sửa đề \(\hept{\begin{cases}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4xz=2\left(x+z\right)\end{cases}}\)
Dễ thấy x = y = z = 0 ko phải là nghiệm của phương trình
Chia cả 2 vế của 3 pt lần lượt cho xy ; yz ; xz ta được
\(\hept{\begin{cases}3=\frac{2}{y}+\frac{2}{x}\\5=\frac{6}{z}+\frac{6}{y}\\4=\frac{2}{z}+\frac{2}{x}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{3}{2}\\\frac{1}{y}+\frac{1}{z}=\frac{5}{6}\\\frac{1}{x}+\frac{1}{z}=2\end{cases}}\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
Ta thu được hệ
\(\hept{\begin{cases}a+b=\frac{3}{2}\\b+c=\frac{5}{6}\\c+a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=\frac{13}{6}\\b+c=\frac{5}{6}\\c+a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b+c=\frac{13}{6}\\a=\frac{4}{3}\\b=\frac{1}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{4}{3}\\b=\frac{1}{6}\\c=\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=6\\z=\frac{3}{2}\end{cases}}\)