Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x\left(x+1\right):2}=\frac{399}{400}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=\frac{399}{400}\left(\text{Quy đồng nhé !}\right)\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+......+\frac{2}{x\left(x+1\right)}=\frac{399}{400}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{399}{400}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{399}{400}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{399}{400}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{399}{800}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{399}{800}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{800}\)
=> x + 1 = 800
<=> x = 799
1/3+1/6+1/10+...+1/x(x+1):2=399/400
2.[1/3.2+1/6.2+1/10.2+...+1/x(x+1)]=399/400
2.[1/6+1/12+1/20+...+1/x(x+1)]=399/400
2.[1/2.3+1/3.4+1/4.5+...+1/x(x+1)]=399/400
1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=399/800
1/2-1/x+1=399/800
1/x+1=1/800
=> x+1=800
=> x=799