Cho đường tròn tâm O, bán kính R và một dây cung BC cố định (BC không đi qua O). A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ hai lần lượt là Q và P.
a) CMR: bốn điểm B, F, E, C cùng thuộc một đường tròn.
b) CMR: các đường PQ, EF song song với nhau.
c) Gọi I là trung điểm của BC. CMR: góc FDE bằng hai lần góc ABE và góc FDE góc FIE.
d) Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất.
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O, ba đường cao AD,BE,CF của tam giac ABC cắt nhau ở H. kéo dài AO cát đường tròn tại M, kéo dài AD CẮT dường tròn O tại A
1. MK // BC
2. DH=DK
3.HM đi qua trung điểm của I của BC
giúp mk ý 2,3 nhá
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M,N,P.Chứng minh rằng: Tứ giác CEHD, nội tiếp .
Cho tam giác ABC nhọn. Các đường cao AD;BE;CF cắt nhau tại H. Gọi M là trung điểm của HC; N là trung điểm của AC. AM cắt HN tại G. Đường thẳng qua M vuông góc với HC và đường thẳng qua N vuông góc với AC tại K. CMR:
a. \(S_{AEF}=S_{ABC}.cos^2BAC\)
b. \(BH.KM=BA.KN\)
c. \(\sqrt{\frac{GA^5+GB^5+GH^5}{GM^5+GK^5+GN^5}=4\sqrt{2}}\)
Giúp mình bài này nhé
Cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R) có đường cao là AD và đường kính là AM; AD cắt (O) tại K
a) chứng minh B, K, M, C là 4 đỉnh của một hình thang cân.
b) Gọi H là điểm đối xứng của K qua BC. Chứng minh H là trực tâm của tam giác ABC
c) BH cắt AC tại E, CH cắt AB tại F. Chứng minh trung điểm I của AH thuộc đường tròn ngoại tiếp tam giác FED. Cho AE=3, CE=4, BH=4. Tính HE.
Mình giải được a và b rồi còn c thì làm mãi không được
Cho tam giác ABC vuông tại A có đường cao AH. Từ H hạ đường cao xuống AB và AC theo thứ tự E và F. Chứng minh AH3 = BE . CF . BC
Cho đoạn BC cố định có độ dài 2a với a > 0 và một điểm A di động sao cho góc BAC = \(90^o\). Kẻ AH vuông góc với BC tại H. Gọi HE và HF lần lượt là đường cao của tam giác ABH và tam giác ACH.
1. Chứng minh rằng: \(BC^2=3AH^2+BE^2+CF^2\)
2. Tìm điều kiện cùa tam giác ABC để tổng \(BE^2+CF^2\) đạt giá trị nhỏ nhất
Cho tam giác ABC cân tại A , các đường cao AH và BK . Qua B kẻ đường thẳng vuông góc BC cắt đường thẳng AC tại D . CMR \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?