\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2}{5}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{10}\)
=> x+1=10
=>x=9
1/2x3+1/3x4+...+1/x(x+1)=2/5
=> 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x + 1 = 2/5
=> 1/2 - 1/x + 1 = 2/5
=> 1/x + 1 = 1/10
=> x + 1 = 10
=> x = 9
https://youtu.be/7-8xWXBRWpw
\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+ ... + \(\frac{1}{x\left(x+1\right)}\)= \(\frac{2}{5}\)
<=> \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{x}\) - \(\frac{1}{x+1}\) = \(\frac{2}{5}\)
<=> \(\frac{1}{2}\) - \(\frac{1}{x+1}\) = \(\frac{2}{5}\)
<=> \(\frac{1}{x+1}\)= \(\frac{1}{2}\)- \(\frac{2}{5}\) = \(\frac{5}{10}\)- \(\frac{4}{10}\)= \(\frac{1}{10}\)
=> \(x+1\)\(=10\)
<=> \(x=10-1\)
<=> \(x=9\)
Vậy \(x=9\)