a, \(A=\frac{17^{18}+1}{17^{19}+1}< 1\)
\(A=\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17(17^{17}+1)}{17(17^{18}+1)}=B\)
\(\Rightarrow A< B\)
b, Tương tự câu a
a)Ta có : A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}\) = B
Vậy A < B
b) Làm tương tự như câu A