x2 – 5 = 0 ⇔ x2 = 5 ⇔ x1 = √5; x2 = -√5
Vậy phương trình có hai nghiệm x1 = √5; x2 = -√5
Cách khác:
x2 – 5 = 0 ⇔ x2 – (√5)2 = 0
⇔ (x - √5)(x + √5) = 0
hoặc x - √5 = 0 ⇔ x = √5
hoặc x + √5 = 0 ⇔ x = -√5
x2 – 5 = 0 ⇔ x2 = 5 ⇔ x1 = √5; x2 = -√5
Vậy phương trình có hai nghiệm x1 = √5; x2 = -√5
Cách khác:
x2 – 5 = 0 ⇔ x2 – (√5)2 = 0
⇔ (x - √5)(x + √5) = 0
hoặc x - √5 = 0 ⇔ x = √5
hoặc x + √5 = 0 ⇔ x = -√5
Giải các phương trình sau:
a ) x 2 – 5 = 0 ; b ) x 2 – 2 √ 11 x + 11 = 0
Giải các phương trình sau: x2 – 5 = 0
Giải các phương trình sau bằng cách đưa về phương trình tích x 3 – 5 x 2 –x +5 = 0
Giải các phương trình sau:
b) x 2 - 5 + 2 x + 10 = 0
Giải các phương trình sau: 12 x 4 - 5 x 2 + 30 = 0
Giải các phương trình sau: 5 x 4 - 3 x 2 + 7 16 = 0
Giải các phương trình sau bằng hai cách (phương trình tích; bằng công thức nghiệm) và so sánh kết quả tìm được: 5 x 2 - 3x = 0
Giải các phương trình sau bằng hai cách (phương trình tích; bằng công thức nghiệm) và so sánh kết quả tìm được: 3 5 x 2 + 6x = 0
Giải các phương trình và hệ phương trình sau:
a) 3 x 2 – 7x + 2 = 0