a, Ta có:
2x2-5x+2=0
<=> 2x2-4x-x+2=0
<=> 2x(x-2)-(x-2)=0
<=> (x-2)(2x-1)=0
\(< =>\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\) \(< =>\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(S=\left\{2;\frac{1}{2}\right\}\)
b. \(\frac{1}{2}x^2-2\sqrt{2}x-4=0\)
<=> \(x^2-4\sqrt{2}x-8=0\)
Xét : \(\Delta'=\left(-2\sqrt{2}\right)^2-1.\left(-8\right)\)
=8+8
=16
Vì \(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=2\sqrt{2}+\sqrt{16}\\x=2\sqrt{2}-\sqrt{16}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=2\sqrt{2}+4\\x=2\sqrt{2}-4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là: \(S=\left\{2\sqrt{2}+4;2\sqrt{2}-4\right\}\)