a) Ta có: \(2x^2-3x-2=0\)
nên a=2; b=-3 và c=-2
Vì \(x_1\) và \(x_2\) là nghiệm của phương trình \(2x^2-3x-2=0\) nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{3}{2}\\x_1\cdot x_2=-\dfrac{2}{2}=-1\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=-1\)
nên \(2\cdot x_1\cdot x_2=-2\)
Ta có: \(\left(x_1+x_2\right)^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow x_1^2+x_2^2+2\cdot x_1\cdot x_2=\dfrac{9}{4}\)
\(\Leftrightarrow x_1^2+x_2^2=\dfrac{9}{4}+2=\dfrac{17}{4}\)