4x-10+2(x+1)=8
<=> 4x-10+2x+2-8=0
<=> 6x-16=0
<=> 6x=16
<=> x=8/3
Nhớ giùm
4x - 10 + 2.(x + 1) = 8
=> 4x - 10 + 2x + 2 = 8
=> 6x = 8 - 2 + 10
=> 6x = 16
=> x = 8/3
Vậy S = {8/3}.
4x-10+2(x+1)=8
<=>4x-10+2x+2=8
<=>6x-8=8
<=>6x=16
<=>x=8/3
4x-10+2(x+1)=8
<=> 4x-10+2x+2-8=0
<=> 6x-16=0
<=> 6x=16
<=> x=8/3
Nhớ giùm
4x - 10 + 2.(x + 1) = 8
=> 4x - 10 + 2x + 2 = 8
=> 6x = 8 - 2 + 10
=> 6x = 16
=> x = 8/3
Vậy S = {8/3}.
4x-10+2(x+1)=8
<=>4x-10+2x+2=8
<=>6x-8=8
<=>6x=16
<=>x=8/3
câu 1 giải các phương trình sau.
a) 4x+8=3x-15
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) 2x-8\(\ge\)0.
b)10+10x>0
câu 3 giải bài toán bằng các lập phương trình
Một học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường từ nhà đến trường của người đó.
câu 4 Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB(AH\(\perp\)DB,H\(\in\)DB).
a) Chúng minh \(\Delta\)HAD đồng dạng \(\Delta\)ABD.
b) Chứng minh:AD\(^2\)=DH.DB.
c)Tính độ dài các đoạn thẳng AH,DH.
d) Tính tỉ số diện tích \(\Delta\)HAD và \(\Delta\)ABD từ đó suy ra tỉ số đồng dạng của nó.
giúp mình với mai mình thi rồi SOS !!!!!!!
giải các phương trình sau :
a) \(\frac{1}{x^2+4x+4}+\frac{2}{x^2+4x+5}=\frac{6}{x^2+4x+6}\)
b) \(\left(x+2\right)^2+\left(\frac{x+2}{x+1}\right)^2=8\)
Giải phương trình \(\left(x^2+8x+8\right)^2=\left(4x+6\right)\left(2x^2+12x+10\right)\)
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !
Giải các phương trình sau:
\(g.\dfrac{1-3x}{6}+x-1=\dfrac{x+2}{2}\)
\(h.\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
\(i.\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
giải các phương trình sau
1, \(\dfrac{2x}{x-1}-\dfrac{3}{x+3}=\dfrac{x^2+3}{\left(x+1\right)\left(x-3\right)}\)
2,\(\dfrac{x}{x-3}-\dfrac{1}{x+2}=\dfrac{4x+3}{\left(x-3\right)\left(x+2\right)}\)
Giải các phương trình sau bằng cách đưa về phương trình tích:
a, \(9x^2-1=\left(3x+1\right)\left(2x-1\right)\)
b, \(\left(4x-3\right)^2=4\left(x^2-2x+1\right)\)
Hãy giải phương trình sau:\(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)
bài 1: giải phương trình
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
Bài 2: tìm giá trị của tham số m để phương trình sau vô nghiệm:\(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)