Đặt: \(x^2+4x+10=t\)
Ta có bất phương trình:
\(t^2-7\left(t+1\right)+7< 0\)
<=> \(t^2-7t< 0\)
<=> \(t\left(t-7\right)< 0\)
TH1: \(\hept{\begin{cases}t< 0\\t-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}t< 0\\t>7\end{cases}}\)vô lí
Th2: \(\hept{\begin{cases}t>0\\t-7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}t>0\\t< 7\end{cases}}\Leftrightarrow0< t< 7\)
Với 0 < t < 7 ta có:
\(0< x^2+4x+10< 7\)
<=> \(0< \left(x+2\right)^2+6< 7\)
<=> \(\left(x+2\right)^2< 1\)
<=> \(-1< x+2< 1\)
<=> - 3 < x < -1
Kết luận:...