Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NQN

Giải bất phương trình sau:

\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}\) lớn hơn hoặc bằng \(0\)

Trí Tiên亗
3 tháng 3 2020 lúc 15:19

Đặt 

\(A=\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}\) 

( ĐKXĐ : \(x\ne2,x\ne3,x\ne4,x\ne5,x\ne6\) )

\(=\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}\)

\(=\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+...+\frac{1}{x-5}-\frac{1}{x-6}\)

\(=\frac{1}{x-2}-\frac{1}{x-6}\)

\(=\frac{-4}{\left(x-2\right)\left(x-6\right)}\)

Để : \(A\ge0\Leftrightarrow\frac{-4}{\left(x-2\right)\left(x-6\right)}\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\le0\)

TH1 : \(\hept{\begin{cases}x-2\le0\\x-6\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le2\\x\ge6\end{cases}}\) ( vô lý )

TH2 : \(\hept{\begin{cases}x-2\ge0\\x-6\le0\end{cases}\Leftrightarrow2\le x\le6}\)kết hợp với ĐKXĐ

\(\Rightarrow2< x< 6\)

Vậy : \(2< x< 6\) thỏa mãn bất phương trình.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Phú Vinh
Xem chi tiết
Sagittarus
Xem chi tiết
Shinichi
Xem chi tiết
nguyenthiluyen
Xem chi tiết
Nguyễn Đức Thành
Xem chi tiết
๖ACE✪Şнαdσωッ
Xem chi tiết
Unknown_Hacker
Xem chi tiết
Lưu Anh Đức
Xem chi tiết
Trần Ngọc Hà My
Xem chi tiết