Đặt
\(A=\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}\)
( ĐKXĐ : \(x\ne2,x\ne3,x\ne4,x\ne5,x\ne6\) )
\(=\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}\)
\(=\frac{1}{x-2}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-4}+...+\frac{1}{x-5}-\frac{1}{x-6}\)
\(=\frac{1}{x-2}-\frac{1}{x-6}\)
\(=\frac{-4}{\left(x-2\right)\left(x-6\right)}\)
Để : \(A\ge0\Leftrightarrow\frac{-4}{\left(x-2\right)\left(x-6\right)}\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\le0\)
TH1 : \(\hept{\begin{cases}x-2\le0\\x-6\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le2\\x\ge6\end{cases}}\) ( vô lý )
TH2 : \(\hept{\begin{cases}x-2\ge0\\x-6\le0\end{cases}\Leftrightarrow2\le x\le6}\)kết hợp với ĐKXĐ
\(\Rightarrow2< x< 6\)
Vậy : \(2< x< 6\) thỏa mãn bất phương trình.