Giải bất phương trình và phương trình sau :
a, \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
b, \(\frac{x^2-4-\left|x-2\right|}{2}=x\left(x-1\right)\)
Giải bất phương trình và phương trình sau :
\(a,\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
\(b,\frac{x^2-4-\left|x-2\right|}{2}=x\left(x+1\right)\)
B1 :Giải phương trình
a,\(\frac{3\left(x-3\right)}{4}-1=\frac{2x+3\left(x+1\right)}{6}-\frac{7+12x}{12}\)
b,\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
c,\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
d,I7-xI-5x=1
B2:Giải bất phương trình
a,\(\left(x-2\right)\left(x+2\right)\ge x\left(x-4\right)\)
b,\(\frac{x-1}{4}-1\ge\frac{x+1}{3}+8\)
\(\text{Giải các bất phương trình sau:}\)
\(\left(x+2\right)^2-3\left(x-1\right)>x\left(x-1\right)-5\)
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\frac{x+2}{3}+\frac{x+3}{4}>x-\frac{x-1}{6}\)
\(\frac{2x-1}{4}-\frac{3x+2}{5}\le2+\frac{x-4}{10}\)
\(\frac{3x+5}{2}-\frac{4x-3}{3}\ge-1\)
Giải bất phương trình:
a) \(\left(x-3\right)^2< x^2-5x+4\)
b) \(\left(x-3\right)\left(x+3\right)\le\left(x+2\right)^2+3\)
c)\(\frac{4x-5}{7}>\frac{7-x}{5}\)
d) \(\frac{2x+1}{2}+3\ge\frac{3-5x}{3}-\frac{4x+1}{4}\)
Giải các phương trình và bất phương trình sau:
a, \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
b, \(\frac{2x\left(x^2+1\right)-x^2-4}{3}+x\left(x^2-x+1\right)>\frac{5x^2+5}{3}\)
ĐẠI SỐ
1. Giải các phương trình sau :
a) \(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
b) \(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
c) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
2. Giải các bất phương trình sau :
a) \(5+\frac{x+4}{5}< x-\frac{x-2}{2}+\frac{x+3}{3}\)
b) \(x+1-\frac{x-1}{3}< \frac{2x+3}{2}+\frac{x}{3}+5\)
c) \(\frac{\left(3x-2\right)^2}{3}-\frac{\left(2x+1\right)^2}{3}\le x\left(x+1\right)\)
d) \(\frac{2x+3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)
Giải bất phương trình:
\(\left(1+\frac{2}{4}\right)\left(1+\frac{2}{10}\right)\left(1+\frac{2}{18}\right)...\left(1+\frac{2}{108}\right).x>\frac{x^2}{2}+3\)
Giải bất phương trình
a, \(5+\frac{x+4}{5}< x=\frac{x-2}{2}+\frac{x+3}{3}\)
b, \(x+1-\frac{x-1}{3}< \frac{2x+3}{3}\frac{x}{3}+5\)
c, \(\frac{\left(x-3\right)^2}{3}-\frac{\left(2x-1\right)^2}{12}\le x\left(x+1\right)\)
d, \(\frac{2x-3}{4}-\frac{x+1}{3}\ge\frac{1}{2}-\frac{3-x}{5}\)