Giải bất phương trình sau với a là hằng số:
\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\)
Giai các bất phương trình với a là hằng
\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\)
giải phương trình
\(x+\frac{2a|x+a|}{x}=\frac{a^2}{x}\)( a là hằng số)
giải phương trình với tham số a:
\(3x+\frac{x}{a}-\frac{3a}{a+1}=\frac{4ax}{\left(a+1\right)^2}+\frac{\left(2a+1\right)x}{a\left(a+1\right)^2}-\frac{3a^2}{\left(a+1\right)^3}\)
a) Chứng minh hằng đẳng thức sau :
\(\frac{1}{a-2b}+\frac{6b}{4b^2-a^2}-\frac{2}{a+2b}=-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)\)
b) Chứng minh hằng đẳng thức Ơle sau :
\(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
giải và biện luaanl phương trình sau với a là tham số:
a, a(ax-1)=x-1
b, \(\frac{x-a}{a+1}\)+\(\frac{x-1}{a-1}\)=\(\frac{2a}{1-a^2}\)
GPT
a) \(\frac{x}{2a+x}+\frac{2a+x}{2a-x}=\frac{8a^2}{x^2-4a^2}\)(a là hằng)
b) \(\frac{2a-3b}{x-2a}+\frac{3b-2a}{x-3b}=0\)(a và b là hằng)
Cho \(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\). Hãy rút gọn M.
Rút gọn biểu thức sau : \(R=\left(\frac{a-2}{2a-2}-\frac{3}{2-2a}-\frac{a^2+2a+3}{2a+2}\right).\left(1-\frac{a-3}{a+1}\right)\)
Bài này mình ra kết quả không gọn lắm, nên muốn tham khảo đáp số của mọi người ạ!