Giải giùm mình bài này
$\left[\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{y-x}\right].\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}$
\(\)
\(\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right)\div\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)
giải giúp mình bài này
\(=\frac{x+1}{2\left(x-1\right)}+\frac{2}{2\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\)
=\(\frac{\left(x+1\right).\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x-2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2x+2\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
=\(\frac{x\sqrt{x}+4x+\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(x+4\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
LƯU Ý: CAP NÀY CHỈ LÀ CAP NHÁP
\(B=\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\) ĐKXĐ: ...
\(=\frac{\left(x\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}\right)-\left(\sqrt{x}+3\right)\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2x+2\sqrt{x}-\sqrt{x}-1}\)
\(=\frac{x\sqrt{x}+x+\sqrt{x}-x^2-x\sqrt{x}-x-x^2+\sqrt{x}-3x\sqrt{x}+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{2\sqrt{x}\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\)
\(=\frac{-3x\sqrt{x}+2\sqrt{x}-2x^2+3}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3-3x\sqrt{x}+2\sqrt{x}-2x^2}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{3\left(1-x\sqrt{x}\right)+2\sqrt{x}\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}+3\right)\left(1-x\sqrt{x}\right)}{\left(x\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{x-1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{-2\sqrt{x}-3}{1-\sqrt{x}}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\left(\frac{1-x\sqrt{x}}{\sqrt{x}-x}+1\right)\left(\frac{1+x\sqrt{x}}{1+\sqrt{x}}+\sqrt{x}\right):\frac{\left(x-1\right)^2}{2\sqrt{x}}\)
mình đang cần gấp giúp mình nha
Các bạn giúp mình các bài này nha.
1. Tính:
a.\(\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\sqrt{\frac{4\sqrt{5}+8}{\sqrt{5}-2}}\)
b.\(\left(1+\frac{\sqrt{3}}{2}\right)\left(1-\frac{\sqrt{3}}{2}\right)-\left(1-\frac{\sqrt{3}}{2}\right)\left(1+\sqrt{1+\frac{\sqrt{3}}{2}}\right)\)
2.Tính giá trị nhỏ nhất:
\(-\sqrt{x}+x\)
3. Tính giá trị lớn nhất:
\(\sqrt{x}-x\)
Các bạn làm được bài này thì làm giúp mình nha. Mình bí quá
\(P=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-3}{x-\sqrt{x}-2}\right):\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{2}{\sqrt{x}-2}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x+\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-\sqrt{x}+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4-x+3+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+2\sqrt{x}+2}\)
\(=\frac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
\(M=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}.\)
=\(\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)-\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x+1}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\frac{x+1}{\sqrt{x}}\)
=\(\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}+\frac{x+1}{\sqrt{x}}\right):\sqrt{x}+1\)
=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}}:\sqrt{x}+1\)
=\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}.\frac{1}{\sqrt{x}+1}\)
=\(\frac{\sqrt{x}+1}{\sqrt{x}}\)
ĐÁP ÁN ĐÚNG KO???
rút gọn giùm mình nhé :
\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\frac{\left(1-x\right)^2}{2}\)