Giá trị nhỏ nhất của biểu thức: \(B=\sqrt{x^2+2x+2y^2+4y+12}+\sqrt{x^2+2x+5}\) là:
Tìm giá trị nhỏ nhất của: \(A=\sqrt{x^2-6x+2y^2+4y+20}+\sqrt{x^2+2x+5}\)
Tìm x,y để biểu thức:
A = \(\sqrt{x^2+2y^2-6x+4y+11}\)+\(\sqrt{x^2+3y^2+2x+6y+4}\)
Đạt giá trị nhỏ nhất
cho x , y và z là các số thực dương thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\) . Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{2x^2+3xy+4y^2}+\sqrt{2y^2+3yz+4z^2}+\sqrt{2z^2+3zx+4x^2}\)
a) Rút gọn biểu thức : \(A=\left(\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4}\right)\left(\sqrt[3]{3}-\sqrt[3]{2}\right)\)
b) Tìm x, y để biểu thức B đạt giá trị nhỏ nhất:
\(B=\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
Giúp mình với help :((
Cho các số dương x,y,z thỏa mãn : x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Help me!
Tìm giá trị nhỏ nhất của \(A=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
tìm giá trị nhỏ nhất của biểu thức:
D= x+2y -\(\sqrt{2x-y}\)- 5\(\sqrt{4y-3}\)+ 13 ( x≥\(\frac{1}{2}\); y≥ \(\frac{3}{4}\))