Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
zZz Phan Cả Phát zZz

Giá trị của x thỏa mãn phương trình:

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+.....+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\) là : 

Nguyễn Hưng Phát
16 tháng 8 2016 lúc 8:27

\(\frac{2}{1.2}+\frac{2}{2.3}+..........+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(\Rightarrow2\left(\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{x\left(x+1\right)}\right)=\frac{4028}{2015}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..........+\frac{1}{x}-\frac{1}{x+1}=\frac{4028}{2015}:2\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow x+1=2015\Rightarrow x=2014\)

OoO Pipy OoO
16 tháng 8 2016 lúc 8:31

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)

\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}\right)=1\frac{2013}{2015}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{2013}{2015}\div2\)

\(1-\frac{1}{x+1}=\frac{2014}{2015}\)

\(\frac{1}{x+1}=1-\frac{2014}{2015}\)

\(\frac{1}{x+1}=\frac{1}{2015}\)

\(x+1=2015\)

\(x=2015-1\)

\(x=2014\)

Trần Hoàng Việt
5 tháng 11 2017 lúc 9:54

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình


Các câu hỏi tương tự
Mika Yuuichiru
Xem chi tiết
Vũ Thị Thùy Trang
Xem chi tiết
lê thanh tùng
Xem chi tiết
Vũ Huy Đô
Xem chi tiết
luong quang thanh
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
๖Fly༉Donutღღ
Xem chi tiết
nhocanime
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết