\(A=36x^2+24x+7\)
\(A=\left(6x\right)^2+2.6x.2+2^2+3\)
\(A=\left(6x+2\right)^2+3\)
Vì \(\left(6x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(6x+2\right)^2+3\ge3\forall x\)
\(\Rightarrow A\ge3\forall x\)
\(\Rightarrow A=3\Leftrightarrow\left(6x+2\right)^2=0\)
\(\Leftrightarrow6x+2=0\)
\(\Leftrightarrow6x=-2\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(Amin=3\Leftrightarrow x=-\frac{1}{3}\)
36x2+24x+7
=36x2+24x+4+3
=(36x2+24x+4)+3
=(6x+2)2+3
vì bình phương của 1 số luôn lớn hơn hoặc bằng 0
suy ra (6x+2)2>=0
suy ra (6x+2)2+3>=3
Min của A=3 khi:
6x+2=0
6x= -2
x=-2/6
vậy Mim của A=3 khi x=-2/6